Interaction of vascular smooth muscle cells with collagen-impregnated embolization coils studied with a novel quantitative in vitro model.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Modifications of aneurysm occlusion devices and other biologically active molecules may reduce the risk of recanalization by promoting vascular cell migration, adhesion, and proliferation. Our purpose was to apply in vitro methods in the qualitative and quantitative analysis of vascular smooth muscle cell (VSMC) interactions with collagen-impregnated microcoils. METHODS The adhesion of rat aortic VSMCs to collagen fiber bundles (CFBs), nitinol coils, and collagen-impregnated nitinol coils (CINCs) was examined by using an assay consisting of monopulse exposure to increasing concentrations of rat aortic VSMCs. Exposed devices were washed and examined by using confocal fluorescence microscopy. Adhesion coefficients, which quantitatively express the cell-binding quality of a surface, were determined by using a mathematical model for cell-device interactions. RESULTS VSMCs, attached to devices, spread out and extended cytoplasmic projections over the contact surface. Cell distribution was random on CFBs and within interloop troughs on nitinol coils. On collagen-impregnated coils, VSMCs were selectively concentrated on the collagen between coil loops. The average adhesion coefficient was 25.0 for CFBs, 8.5 for CINCs (250-microm pitch), and 6.5 for nitinol coils. Adhesion coefficient differences for the three devices were significant (P =.044). CONCLUSION The monopulse exposure assay is a simple and reproducible in vitro test that provides qualitative information about the morphology and topography of cell-device contacts and permits quantitative measurement of the intrinsic cell-binding quality of the test device. VSMCs exposed to collagen-impregnated microcoils selectively attach to collagen. Collagen enhances the rate of VSMC adhesion to embolic devices, and the degree of enhancement correlates with the surface area constituted by collagen.
منابع مشابه
Inflammation and Vascular Calcification Causing Effects of Oxidized HDL are Attenuated by Adiponectin in Human Vascular Smooth Muscle Cells
The role of oxidized high-density lipoprotein (oxHDL) and the protective effects of adiponectin in terms of vascular calcification is not well established. This study was conducted to investigate the effects of oxHDL with regards to inflammation and vascular calcification and to determine the protective role of adiponectin in attenuating the detrimental effects of oxHDL. Cell viability, mineral...
متن کاملA collagen-based coil for embolization of saccular aneurysms in a New Zealand White rabbit model.
BACKGROUND AND PURPOSE In the treatment of cerebral aneurysms, platinum coils often fail to elicit a fibrotic response. We tested the hypothesis that a new, collagen-based endovascular coil would improve angiographic and histologic outcomes as compared with those achieved with platinum coils in a rabbit model of saccular aneurysms. METHODS Elastase-induced aneurysms were created in 12 New Zea...
متن کاملThe Effect of Adiponectin on Osteonectin Gene Expression by Oxidized Low Density Lipoprotein-Treated Vascular Smooth Muscle Cells
Osteonectin is a bone- associated protein involved in vascular calcification. Adiponectin may protect against cardiovascular disease but possible effects on vascular calcification have been poorly studied. The aim of this study was to investigate the modulatory effect of adiponectin on oxidized low density lipoprotein (oxLDL)- induced expression of osteonectin in human aorta vascular smooth mus...
متن کاملThe effect of adrenomedullin and proadrenomedullin N- terminal 20 peptide on angiotensin II induced vascular smooth muscle cell proliferation
Objective(s): The study aimed to investigate the effects of adrenomedullin (ADM) and proadrenomedullin N- terminal 20 peptide (PAMP) on angiotensin II (AngII)-stimulated proliferation in vascular smooth muscle cells (VSMCs). Materials and Methods: Thoracic aorta was obtained from Wistar rats and VSMCs were isolated from aorta tissues and then cultured. In vitro cultured VSMCs were stimulated w...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2002